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Abstract
We calculate the Casimir force on an isolated dielectric sphere in an ensemble
of N spheres due to multiple mutual interactions of the collection of spheres. In
particular, we consider dielectric spheres immersed in some other background
dielectric. As an example, the Casimir force between two and three spheres at
zero and finite temperature is evaluated. For a very large number of spheres,
we consider a large-N scaling limit of the Casimir force.

PACS numbers: 42.50.Ct, 12.20.-m, 42.50.Nn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dispersion interactions between macroscopic bodies have been for a long time the subject
of investigation, and a variety of experiments have been performed to test the theoretical
predictions. Whilst the theory of Casimir forces [1] between bodies in free space is well
defined, the issue of choosing the correct stress tensor for bodies immersed in dielectric
backgrounds is not a closed discussion [2–6]. Depending on what type of compatibility
is required with the microscopic degrees of freedom, one is led to different choices. The
classic example of the Minkowski versus canonical stress tensor (formally the same as the
stress tensor in microscopic electrodynamics) or the choice for the momentum density versus
Poynting vector describing momentum density propagation in a dispersive media shows the
different possibilities on offer. The canonical stress tensor is the choice compatible with the
Lorentz force law [2] that describes the microscopic degrees of freedom. With this choice, the
formalism of macroscopic quantum electrodynamics [7] can be used to evaluate the two-point
correlation functions. In this description, one is able to maintain the equal time commutation
relations for the physical fields and thus employ a sensible quantum theory of light interacting
linearly and causally with matter. In the same fashion, many calculations are successfully
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carried out in the well-established Lifshitz framework [8–10]. It is also not surprising that
there should be a large overlap with colloid physics and the corresponding dispersion forces
(see for instance [11]). Given that Casimir force experiments can now be performed with
bodies immersed in dielectric media [12–14], it is an important objective to develop the
predictions based on the canonical stress tensor for future experimental matching. With this
testing in mind, we may start to think of new physical probes e.g. many-body interactions [15]
and critical Casimir effects [16] as a way of better understanding and testing the underlying
processes. This combined effort is necessary in establishing any scheme for the choice of the
relevant physical observables.

The necessity of a detailed understanding of the above issues is clearly of particular
relevance to nano-scale architectures, where a precise knowledge of these forces (stiction
forces) between nano-mechanical objects is important. At such small length scales where
bodies are attracting/repelling due to these interactions, one will encounter new frictional
forces or many-body effects. Atom chip miniaturization [17] is a good example where one
would need a quantitative description. We also see the point here that a detailed understanding
of both different geometries and many-body effects will be required.

Clearly the practical need is to better understand the nature of the interactions between
macroscopic bodies. As recently pointed out in [18], one needs to go beyond the simple
proximity force approximation (PFA) and correctly include volume (bulk) contributions to
the Casimir force (see also [10] for an overview). To this end, Casimir energies have been
calculated recently [19–23] between arbitrary compact bodies. Their approach was to evaluate
a suitable energy functional by the use of path integral determinants and to make expansions,
having evaluated a T-operator (see also [24–26] for similar early work). By deducing an
interaction potential, a force could then be derived by simple differentiation (for an overview,
see [27]). Related work on both calculational and matters of principle can be found in [28–32].

In this paper, we evaluate the Casimir force for a collection of dielectric spheres in a
dielectric media using the framework of macroscopic quantum electrodynamics as applied
in [2] to the planar geometry. We use the canonical stress tensor to calculate the resultant
force on one of the spheres in the configuration. A brief comment will be made on how
they qualitatively differ from those that arise from the Minkowski stress tensor, though a
detailed comparison of quantitative differences will be left to the future (when the appropriate
experiments have the necessary sensitivity). The permittivities are considered to be frequency
dependent and complex in general. The examples chosen to illustrate the inter-sphere forces
will be evaluated in the retarded limit whereby we will use their constant static values. The
calculations are carried out in a similar fashion to the Casimir energies cited above, by
performing perturbative expansions of scattering two-point functions in terms of the relevant
reflection/scattering coefficients. That these are the relevant perturbation parameters follows
directly from energy conservation (i.e. the dielectric spheres are not amplifying bodies) and
that they are effectively the energy-dependent coupling constants of the theory. Generally
speaking, one needs to find an approximate geometry for which the Helmholtz equation can
be solved (i.e. we perform the separation of variables in local coordinate patches and glue
them together). Then the eigenfunctions and eigenvalues can be used to evaluate the scattering
correlation functions in one of two ways. One is to use a Lippmann–Schwinger evaluation
of the Green’s function based on the known background Hamiltonian where the dielectric
spheres are perturbation potentials on top of this. The second route which is the one followed
here is to apply the boundary conditions at all the interfaces and then deduce the ‘out’ states
(the scattered modes together with their outgoing wavefunctions) from the ‘in’ states (the
incident driving modes and their incoming wavefunctions). The driving modes, which are the
coefficients of the eigenfunction expansion of the electric and magnetic fields (the precise form
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will be given later on), must be evaluated and indeed these are deduced from the background
when no spheres are present.

In fact, although one usually talks about the separation of the spheres, it is the total
path length that is the meaningful distance when talking about the N-body force. A further
simplification is possible for a set of terms in the multiple scattering expansion where the
number of spheres becomes large, whilst the coupling constants become small. For some
fixed separation of the spheres, we can deduce an alternative functional form of the force.

The paper is organized as follows. In section 2, we evaluate the scattering two-point
functions for the given setup of N distinct spheres as a perturbative series in the Mie scattering
coefficients. This allows us to write the Casimir force as a multiple scattering expansion. In
sections 3 and 4, we consider the two-sphere and three-sphere configurations both at zero and
finite temperatures. The evaluation performed here is for the retarded limit where we take the
static values of the permittivities as a definite way to evaluate frequency integral. In section 5,
we calculate the N-body force in the limit of a large number of spheres and at weak coupling.
Finally in section 6 we set out our conclusions.

2. The general force expression in an N-sphere system

It is worth remarking on some aspects of the geometry for the simple two-sphere system
before considering the general N-sphere system. One would expect that the force on one of
the two spheres (with separation r) can be evaluated in three distinct perturbative regions, i.e.
particular distinct separations. In each region, the force will have some scaling law.

(i) Region 1, where the separation of the spheres is much greater than the sphere radii. Here
an asymptotic multipole expansion is relevant. The polarizabilities act as the perturbation
theory coupling constants. The leading term for the force goes as 1/r8 and the effective
geometry is three dimensional.

(ii) Region 2, where the separation of the sphere surfaces is small compared to the radii. The
leading term for the force per unit area goes as 1/r4 for small parallel elements of area.
The effective geometry becomes planar (one dimensional). This would be the basis for
the proximity force approximation (PFA) where curvature corrections are then taken into
account at close separations. The force then goes as 1/r3.

(iii) Region 3, where the separation is comparable to the radii. Here one might think that there
exists a third perturbative point (effective geometry) that is somewhere between the forms
of regions 1 and 2. The leading term for the force per unit length may be expected to go
as 1/r6 with the corresponding two-dimensional effective geometry.

The ‘effective geometry’ mentioned above is just the space in which the bodies can be moved
and that parametrizes the interaction. For example the parallel plate geometry has just the one
dimension in which they can be moved. By interpolating the known perturbative solutions
in regions 1 and 2, one can find an approximate solution that can be used over all distances.
However, this method also requires the use of two different cutoff separations, where in the
lower limit we would encounter an infinity and an upper cutoff to say what we mean by a ‘large’
separation. Is is also difficult to glue these asymptotic solutions together in the intermediate
region because we need to convert the small separation pressure into a force. It is not obvious
what area integration to use here and signals the trouble of using the PFA in high curvature
compact geometries.
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Figure 1. The N-sphere system consists of N dielectric spheres of radii R[1], . . . , R[N ] each
centred on N separate coordinate systems �1, . . . , �N , all contained in a background dielectric.

2.1. The scattering mode decomposition

The general strategy in calculating the Casimir force on a particular body is simply to calculate
the scattering two-point correlation functions for the physical fields, in our case the electric
and magnetic fields. Given N-spheres, we are going to calculate the force on sphere 1 due to
the presence of the remaining (N − 1) spheres. The Helmholtz equation for the electric and
magnetic fields is solved in N separate coordinate systems centred on each sphere in terms of
vector wavefunctions about each of the separate spherical coordinate systems’ origin [33, 34].
The pictorial setup of our system is given in figure 1.

Using the results in [33], one is able to map solutions about any given sphere (any
coordinate system �i) into a solution about any other translated origin (a coordinate system
�j ). It is this fact that will enable us to perform the integral over the volume of the sphere.

The Casimir force on sphere 1 (with volume B2, the ball which has the two-dimensional
sphere as its boundary) due to the effects of the N-sphere system of differing material properties
is given by

Fj (1|N − 1) =
∫

B2
d3x∇iTij (x). (1)

The stress–energy tensor is given by the standard vacuum expression (which is consistent with
the Lorentz force law [2])

Tij (x) = Ei (x)Ej (x) + Bi (x)Bj (x) − 1
2δij (|E(x)|2 + |B(x)|2), (2)

and it is understood that we are taking the limit for the initial and final points

lim
x1→x2

E(x1)E(x2) = E(x2)E(x2), (3)

lim
x1→x2

B(x1)B(x2) = B(x2)B(x2). (4)

In performing this limit, it is first necessary to make subtractions of the singular part arising
from the free Green’s tensor. This is somewhat like a vacuum bubble one encounters in
quantum field theory where we are throwing away an unobservable zero-point energy. We

4



J. Phys. A: Math. Theor. 43 (2010) 215402 J Babington and S Scheel

then need to evaluate the scattering correlation functions (whilst dropping the direct modes of
propagation), namely

lim
y→x

Ei (x)Ej (y) =
∫ ∞

0
dω dω′〈Eout

i (x;ω)†Ein
j (y;ω′)

〉
, (5)

and similarly for magnetic fields.
A crucial second step is to realize that the volume integral of the force requires a careful

specification of the coordinate origin in order to be able to evaluate the derivative. In the
multiple scattering approach used here the coordinate origin used will be the one centred on
the sphere from which the last scattering event took place, and then translated to the origin
of the sphere where we are calculating the force. In terms of the classical scattering Green’s
tensor Gij centred on the sphere where we are calculating the force, schematically we have∫

B2
d3x∇iGij (x, x) ≈ R

∫
S2

d�2R
2∇XGrr (R, R), (6)

where X is the vector connecting the centre of the two spheres, originating from the last
scattering sphere centre and d�2 is the element of the solid angle. It should be pointed out
here that this approximation, in order to be consistent with the case of a sphere and a dipole,
requires the introduction of a normalization factor (for us it will be 1/4π ). This is because
the derivative acting on the stress tensor is evaluated at the centre of the sphere, whilst the
wavefunctions are evaluated on the sphere’s surface. In the case of the sphere and dipole,
we do not have the integral to do over the S2. Due to the potentially singular nature when
shrinking the sphere down to a point, this clearly must be done carefully.

To construct the scattering two-point function, we write the fields in a mode decomposition
[33] of spherical vector wavefunctions

|Ein〉 =
∑
i,L,m

pi
L,mL|L,m, jL〉 +

∑
i,L,m

qi
L,m

(
1

k
∇ ∧ L

)
|L,m, jL〉, (7)

|Eout〉 =
∑
i,L,m

ai
L,mL|L,m, h+

L〉 +
∑
i,L,m

bi
L,m

(
1

k
∇ ∧ L

)
|L,m, h+

L〉, (8)

|Einternal〉 =
∑
i,L,m

ci
L,mL|L,m, jL〉 +

∑
i,L,m

di
L,m

(
1

k
∇ ∧ L

)
|L,m, jL〉, (9)

|B〉 = i

ω
∇ ∧ |E〉. (10)

(Note that the mode operator coefficients are functions of frequency which for now has been
suppressed.) The ‘in’ and ‘internal’ states are regular at the i-sphere origin, whilst the ‘out’
states are outgoing modes falling off at infinity. They are eigenfunction modes with respect to
the i-sphere of the radial eigenfunctions, represented by spherical Bessel and Hankel functions,
respectively. The internal coefficients (ci

L,m, di
L,m) of a given sphere can be eliminated by the

application of the continuity equations across each sphere. One is then able to determine the
scattering coefficients (ai

L,m, bi
L,m) in terms of the driving modes (pi

L,m, qi
L,m) by making use

of a translation addition theorem for vector wavefunctions [33]. These are given by

L|i1, L1,m1, jL1〉 =
∑

i2,L2,m2

A
i1,i2
L1,m1;L2,m2L|i2, L2,m2, h+

L2〉

+ B
i1,i2
L1,m1;L2,m2

1

k
∇ ∧ L|i2, L2,m2, h+

L2〉 (11)
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and
1

k
∇ ∧ L|i1, L1,m1, jL1〉 =

∑
i2,L2,m2

A
i1,i2
L1,m1;L2,m2

1

k
∇ ∧ L|i2, L2,m2, h+

L2〉

+ B
i1,i2
L1,m1;L2,m2L|i2, L2,m2, h+

L2〉. (12)

Here, A and B are representations of the translation group in the angular momentum basis.
They can be found in [33] (see also [34]), together with the other necessary quantities used
here, but in particular they are functions only of the centre-to-centre sphere separation r[i, j ]
and the background k. The matrices A map TE-to-TE and TM-to-TM, whilst the matrices B
map TE-to-TM and vice versa. Using the Mie scattering coefficients (αL, βL), the scattering
modes are given by (where we suppress indices)

(a, b)(1 + T ) = (α · p, β · q), (13)

where the T-matrix has the block diagonal form

T =
(

α · A α · B

β · A β · B

)
. (14)

The matrix equation given in (13) can be inverted and then perturbatively expanded as a power
series in the Mie scattering coefficients (which play the role of the small coupling constants)
such that the scattered modes are found to be

|a, b〉 =
∞∑

n=0

n∏
m=0

(−T)m|α · p, β · q〉. (15)

The T-matrix is then the set of reflection coefficients from each sphere appropriately translated
and the integer n gives the number of scattering events for the whole set of spheres. This is the
multiple scattering approach (see for example [35]) which allows for all possible scattering
between the spheres.

In order to calculate the N-body Casimir force, it is necessary to consider all possible
ways of connecting all of the spheres. We can form a primitive set of diagrams that can be
built on to generate all other diagrams. A suitable set of definitions are as follows.

• Disconnected diagrams are where some subset of the spheres do not take part in the
multiple N-body scattering process.

• Simply connected diagrams are where all the spheres are connected with no more than
two lines attached to any sphere. This forms a continuous path through all the spheres.

• Reducible diagrams are where diagrams can be written as a simply connected diagram
convoluted with a lower body diagram. This affords a description of multiple internal
scattering.

The simply connected diagrams can be seen to be irreducible N-body diagrams. Unless
otherwise stated, we will always be calculating the simply connected diagrams and correspond
to one particular perturbation series (as opposed to a perturbation series based on the sphere
radii).

2.2. Dielectric backgrounds

We now specialize to the case of dielectric backgrounds and consider an approximation where
βL = 0 so that the b modes vanish. This approximation is based on the eventual small argument
expansion of the Mie scattering coefficients (and thereby a simple multipole expansion) where
the αL scattering coefficient gives the leading contribution in the frequency integral. What
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is interesting in this case is that there are only contributions from the cross terms involving
the a and p modes, as the q and a cross terms are zero due to the antisymmetry properties of
the translation products An · B. From equation (15), it is possible to evaluate the two-point
functions in terms of the driving modes on the surface of sphere 1. The relevant components
(suppressing SO(3) indices) contributing to the rr component of the stress tensor are∫

S2
〈Ei1,out

r (x;ω)†Ei2,in
r (x;ω′)〉|x=R[1] = 0,

∫
S2

〈Bi1,out
r (x;ω)†Bi2,in

r (x;ω′)〉|x=R[1] = 
 k2

ω2

(L(L + 1))2

k2R[1]2
jL(k|R1|)h+

L(k|R1|)

· 〈
ai1

L′(ω)† · A
i1,i2
L′L · pi2

L (ω′)
〉
,∫

S2
〈Ei1,out(x;ω)† · Ei2,in(x;ω′)〉|x=R[1] = 
L(L + 1)jL(k|R1|)h+

L(k|R1|)

· 〈
ai1

L′(ω)† · A
i1,i2
L′L · pi2

L (ω′)
〉
,∫

S2
〈Bi1,out(x;ω)† · Bi2,in(x;ω′)〉|x=R[1] = 
 k2

ω2
(L(L + 1))jL(k|R1|)h+

L(k|R1|)

· 〈
ai1

L′(ω)† · A
i1,i2
L′L · pi2

L (ω′)
〉
.

Here we have used the two relations that the eigenfunctions in the bulk background satisfy:

L|L,m, jL(k|x|)〉 = jL(k|x|)L|L,m〉,(
1

k
∇ ∧ L

)
r

|L,m, jL(k|x|)〉 = L(L + 1)jL(k|x|)
k|x| |L,m〉.

In addition we are anticipating a δ-function in the frequency so that we can be a little cavalier
with the frequencies above.

2.3. Evaluating the background vacuum

What remains to be calculated are the expectation values of the p–p vacuum modes,
〈0|(pi

L1,m1)(p
i
L2,m2)

†|0〉 with respect to some sphere i (in our case this will be sphere 1).
This can be evaluated for a dielectric background εB(ω) that is independent of position and
when there are no spheres present. We can then perform the integral over all space. Note
that this is different from the case of two static dipoles interacting as it is only the location
of the dipole source where the noise current is non-zero as opposed to here where the entire
background is filled with noise which the spheres’ polarizability couples to.

The composition rule for two free (or bulk) Green’s functions in the absence of any
perturbing spheres integrated over all space is given by (a more general result using functional
differentiation and a proper tensor treatment is given in appendix A)∫

d3zGfree(x, z|k)(Gfree(y, z|k))† = 1

2k
∂kG

free(x, y|k), (16)

with k = √
εB(ω)ω/c. Using the explicit form of the free propagator for incoming modes,

Gfree
ij (x, y|k) =

(
δij +

1

k2
∇i∇j

)
eik|x−y|

4π |x − y| , (17)

which becomes

− i∂kG
free
ij (x, y|k) = 1

4π

(
δij +

1

k2
∇i∇j

)
eik|x−y|. (18)

7
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This can then be decomposed as a spherical wave expansion (see e.g. [35])

−i∂kG
free
ij (x, y|k) = 4π

(
δij +

1

k2
∇i∇j

)

·
∑

jL1(k|x|)jL2(k|y|)YL1,m1Y
†
L2,m2.

We can use this result to evaluate the background media vacuum that has the quantum noise
fluctuations throughout. The in-field modes are given by (at some fixed radial distance and in
the �i coordinate system)

pi
L1,m1(ω) = ω

jL1(|x|)
∫

S2

∫
d3zLY

†
L1,m1 · Gfree(x, z|k) · J(z;ω). (19)

The quantum noise current correlation functions at zero temperature are (see [2])

〈J†
i (x, ω)Jj (y, ω′)〉 = 0 (20)

and

〈Ji (x, ω)J†
j (y, ω′)〉 = h̄

π

(
ω2

c2

√

(εB(ω))

√

(εB(ω′))

)
δ3(x − y)δ(ω − ω′). (21)

After some algebra and taking the limit x → y, we obtain for the modes incident on the ith
sphere

〈0|(pi
L1,m1)(p

i
L2,m2)

†|0〉 = h̄ω2

2

(ik)δ(ω − ω′)1i

L1,m1 ⊗ 1i
L2,m2, (22)

where 1 is the (2L + 1) vector populated entirely by 1’s, 1 = (1, . . . , 1), which we shall
from now on denote as |1〉. We see that there are no correlations between the different mode
numbers as one would expect from random noise. By rotating to the imaginary frequency
axis, it is found to be a sensible positive definite object representing the different occupation
numbers of the noise excitations. Further, the size of these vectors give us the level at which
we are truncating our series representation in the angular momentum basis.

2.4. Perturbative force for dielectrics

By making the appropriate substitutions from the previous sections, one is able to calculate
explicitly the force on sphere 1 due to simply connected scattering processes between the
N-spheres (multiple reflections can be included in an obvious fashion). This is given in
appendix B. Here we state simply the result

F[1|N − 1] = −(−1)N
h̄c

4π

N∑
i=2

∇r[i,1]

∫ ∞

0
dX

e−X

√
εBD[1, 1]

cot

(
h̄cX

kBTD[1, 1]

)

×〈1|[PO[α,A]N1,1

] [
XR[1]

D[1, 1]
j

(
XR[1]

D[1, 1]

)
n

(
XR[1]

D[1, 1]

)
W

(
XR[1]

D[1, 1]

)]
|1〉. (23)

Here, D[1, 1] is the loop distance of the simply connected path from sphere 1 back to sphere 1
consisting of the sum of the N separations

D[1, 1] = (|r[1, i]| + |r[i, j ]| + · · · + |r[j, k]| + |r[k, 1]|)s.c.

and Ai+1,i are the set of polynomials in (X, r[i + 1, i]) that remain after extracting the
exponentials from the translation coefficients. Due to the additive nature of these exponentials,
one finds that it is the total path length that occurs in the exponential. The function W is a
measure due to the two separate contributions in the stress tensor arising from the individual
field components and isotropic part (see appendix B).

8
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This expression can be used as a perturbative expansion. The arguments of the Mie
scattering coefficients are always small since the total path length will always be larger than
the sphere radii. It can then be evaluated in different perturbative setups when T = 0 or by
residues when T = 0. It is also worth commenting how the expression for the force derived
here will differ or coincide with that found from the Minkowski stress tensor or from energy
functional methods. At least in some perturbation scheme there will be two main differences.
One will be the scale of the force due to the differing factor of the background permittivity
tensor. The second will be a different set of curvature-corrected terms that result from the extra
isotropic contribution to the stress tensor. In the limit where the background permittivity is
set to the vacuum value, all the expressions for the force will coincide in an exactly analogous
way to that of the parallel plate geometry found in [2].

3. The force between two spheres

We now analyse the specific situation of the force on one sphere due to multiple scattering
with the second in the retarded limit. In this manner we have an illustrative scheme to evaluate
the force and thereby derive simple expansions. This was performed recently using functional
determinants in [19, 20] where in particular the scattering coefficients are expanded to higher
powers in the frequency (and thereby sphere radii). For simplicity, we consider identical
spheres that are aligned along the z-axis resulting in the diagonalization of the m-indices and
take the static values of the different permittivities (since we are in the retarded limit). The
Mie scattering coefficients are also expanded for small arguments only to the first order so that
we will find static polarizabilities of the simple multipole entering expressions. This is done
to show the applicability of the method. All evaluations (integration and matrix operations)
have been performed in Maple and numerical data have been taken from [36].

3.1. The retarded limit in the vacuum at T = 0

For the case of two spheres in the vacuum, one is able to perform an expansion in either the
curvature of the spheres or the difference in permittivities (or the product combination thereof
occurring in the scattering coefficients). In addition the number of scattering events also
acts as a perturbation parameter. The first perturbation series we consider is the difference in
permittivity to make contact with known results. These can be assembled into the standard
multipole moments plus higher curvature-corrected contributions that are valid results at
bilinear order in the difference in the permittivities. This second set of terms arise from the
isotropic part of the stress tensor. Indeed, an expression is obtained directly for the two-body
force

Fz[1|2] = − h̄c

4π

∞∑
m,n=1

1

r[1, 2]4+2m+2n

(
vm,nα

1
mα2

n +
wm,nα

1
mα2

nR[1]2

r[1, 2]2

)
. (24)

Here the coefficients (vm,n, wm,n) are a set of numerical coefficients found after evaluating the
frequency integral, whilst the multipole moments αi

L are the multipole moments of sphere i
given by

αi
L = εi/εB − 1

εi/εB + (L + 1)/L
R[i]2L+1. (25)

It should be said that the first term in the series coincides with the well-known vacuum result
with v1,1 = 23. This has been evaluated for polystyrene balls in the vacuum with values given
in table 1. The force has been plotted against separation in figure 2.
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Table 1. Material properties of the two-sphere system. The dielectric spheres are polystyrene balls
in a background of the vacuum at T = 0 K.

Properties Sphere 1 Sphere 2

Permittivity (sphere) 2.6 2.6
Permittivity (background) 1.0 1.0
Radii (m) 1.0 × 10−6 1.0 × 10−6

Figure 2. A plot of the inter-sphere retarded force between two identical dielectric spheres (with
radii R ≡ R[1]) in the empty vacuum at T = 0 K. The vertical axis is the dimensionless ratio
Force / (h̄c/(4πR2) × 10−12), whilst the horizontal axis is the dimensionless ratio x = r[1, 2]/R.
Here, the relative dielectric permittivity of the polystyrene spheres is ε1 = ε2 = 2.6. The angular
momentum series representation has been truncated at Ltruncate = 3.

3.2. Finite temperature T > 0

Here we consider the polystyrene balls suspended in a liquid silicone solution at room
temperature. The values are given in table 2, followed by their plot in figure 3. The poles are
located on the imaginary frequency axis at h̄cXl/(kBTD[1, 1]) = lπ for the integer l. The
attractive force can hence be evaluated to be of the power series form

Fz[1|2] = − h̄c

4π

(
kBT

h̄c

) ∞∑
l=1

∞∑
m,n=1

e−2r[1,2]
√

εBKBT lπ/(h̄c)

× α1
m(l)α2

n(l)

2m+2n∑
t=0

(
kBT πl

h̄c

)2m+2n−t (
gt

r[1, 2]3+t

)

×
(

v′
m,n(l) + w′

m,n(l)

(
kBT R[1]

h̄c

)2
)

. (26)
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Table 2. Material properties of the two-sphere system. The dielectric spheres are polystyrene balls
in a background of liquid silicone at T = 290 K.

Properties Sphere 1 Sphere 2

Permittivity (sphere) 2.6 2.6
Permittivity (background) 2.2 2.2
Radii (m) 1.0 × 10−6 1.0 × 10−6

Figure 3. A plot of the inter-sphere force between two identical dielectric spheres (with radii
R ≡ R[1]) in a silicone fluid background (εB = 2.2) at T = 293 K. The vertical axis is the
dimensionless ratio Force / (h̄c/(4πR2) × 10−12), whilst the horizontal axis is the dimensionless
ratio x = r[1, 2]/R. Here, the relative dielectric permittivity of the polystyrene spheres is
ε1 = ε2 = 2.6 . The angular momentum series representation has been truncated at Ltruncate = 3
and the Matsubara frequencies truncated at l = 2.

Once again the integration of the frequency gives another set of multipole-type coefficients
(v′

m,n, w
′
m,n) together with another set gt that arise due to the different angular momentum

states that constitute the translation matrices.

4. The force between three spheres

We now analyse the specific situation of the force on one sphere due to multiple scattering
with two other spheres, again in the retarded limit for illustrative purposes. See also
[37, 38] for details of three-atom potentials. It is worth commenting that in order for the
simply connected diagrams to hold as valid, we require a clear line of sight between the three
spheres. This means in particular that the multipole expansion will not be accurate when
the three spheres are collinear (indeed to form a connected diagram now requires multiple
internal reflections effectively convoluting two diagrams that are both two-body). However, as
with the approximations made for the translation coefficients (centre-to-centre neglecting the
material properties of the spheres), we neglect this effect and assume this collinearity effect
not to be present. As with the two-sphere case, static permittivities are used (corresponding
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Figure 4. A plot of the inter-sphere retarded potential between three identical dielectric spheres
(with radii R ≡ R[1]) in the empty vacuum at T = 0 K. The vertical axis is the dimensionless
ratio Potential/(h̄c/(4πR) × 10−11), the horizontal axis labelled by x is the dimensionless ratio
x = r[1, 3]/R and the remaining axis is the angular variable θ [1, 3]. Here, the relative dielectric
permittivity of the polystyrene spheres is ε1 = ε2 = ε3 = 2.6. Spheres 1 and 2 are held fixed
along the z-axis 10R apart. The angular momentum series representation has been truncated at
Ltruncate = 1.

to the retarded limit) and the Mie scattering coefficients are expanded for small arguments so
that expressions contain static polarizabilities.

Figure 4 shows a plot of the inter-sphere retarded potential from which the force can
be found from simple gradients given in equation (23). This is given as a function of the
separation and angle for the third sphere for a fixed separation vector between spheres 1 and 2
in the retarded limit in the vacuum at T = 0. For the finite temperature case T > 0, figure 5 is
a plot of the three-sphere potential for a fixed separation of spheres 1 and 2 along the z-axis.

5. The large N limit of the inter-sphere force

Consider the case of N identical spheres arranged in some random fashion as N → ∞,
αi = α → 0, whilst λ := NαS is held fixed (α = αSω

3R3/c3). We put one constraint
on the separation of all the spheres that every sphere has two nearest-neighbour spheres
with a separation s between them. In this case, there is a single irreducibly connected
diagram that has a minimum path length D[1, 1]m. There are also approximately N
irreducibly connected diagrams that have a slightly increased path length D[1, 1]m+1 that
satisfy D[1, 1]m < D[1, 1]m+1 < D[1, 1]m + 2s. We make the further approximation that each
term of the second set contributes the same amount as the minimum path length diagram to
the N-body scattering. The expression for the associated potential reduces to

V [N ] ≈ ±(−1)N
h̄c

D[1, 1]m

× N

×
∫ ∞

0
dX e−X cot

(
h̄cX

kBTD[1, 1]m

)
[αĀ(X, s)]N . (27)
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Figure 5. A plot of the inter-sphere retarded potential between three identical dielectric
spheres (with radii R ≡ R[1]) in silicone fluid with εB = 2.2 at T = 293 K. Spheres 1
and 2 are held fixed along the z-axis 10R apart. The vertical axis is the dimensionless ratio
Potential/(h̄c/(4πR) × 10−20), the horizontal axis labelled by x is the dimensionless ratio
x = r[1, 3]/R and the remaining axis is the angular variable θ [1, 3]. Here, the relative dielectric
permittivity of the polystyrene spheres is ε1 = ε2 = ε3 = 2.6. The angular momentum series
representation has been truncated at Ltruncate = 1.

Taking the T → 0 limit and then N → ∞ we can extract the dominant L = 1 term

V [N ] ≈ ±(−1)N
h̄c

πs

∫ ∞

0
dX e−X

[(
εS − 1

εS + 2

)
R3

s3
+ O(X/N)

]N

, (28)

which reduces to (using Sterling’s approximation)

V [N ] ≈ ±(−1)Nh̄c
e−N

N !
λN R3N

s1+3N
. (29)

The use of this formula could be in adding an additional sphere to the system and measuring
the resulting oscillation of the force compared to the absolute force before the sphere is added.
Alternatively it could serve to quantify the errors or to rearrange the perturbation series.

6. Conclusions

We have calculated Casimir forces between spheres using a multiple scattering approach. This
has been done at both zero and finite temperature. In the case of the simply connected three-
body force, we have pointed out the need for non-collinearity, but that it is perturbatively not
necessary. The total closed path length being always greater than the respective length scales of
the associated radii helps in quantifying a perturbative evaluation, for example, the frequencies
(found from the radii and total path length) below which the Mie scattering coefficients can be
expanded. This is simply due to the fact that the propagator connecting all scattering centres
in this simple setup contains an exponential factor of the total path length. Additionally, it
addresses the technical problem of going beyond the proximity force approximation (PFA)
[18] since, although continuity equations are applied at each material surface, there exists a
solution of the field equations in each material medium. In general there will be both surface

13



J. Phys. A: Math. Theor. 43 (2010) 215402 J Babington and S Scheel

modes and bulk excitations in the bodies and calculations of Casimir forces should contain
both [39]. The multipole expansions found when the Mie scattering coefficients are expanded
are also not singular when the spheres touch, since the sum of the two radii acts as a physical
lower cutoff (non-overlapping potentials).

For large N and weakly scattering spheres, we have deduced a scaling-type formula for the
simply connected force terms based on a fixed separation set of properties for the configuration.
This could be useful for forces where we want to understand the behaviour as a function of
N rather than the detailed configuration (separations and orientations). It can also serve to
quantify the errors in a multiple scattering expansion when truncating the series at this order.
In a subsequent paper, one of us will develop the idea of the total path length playing a key
role in Casimir interactions.

Theoretically and experimentally there are many open issues that need to be addressed in
conjunction and naturally follow on. It is clear that substantial progress has been made both
theoretically and experimentally in refining the accuracy of Casimir force calculations and
measurements [40]. However, it should be pointed out that the theoretical calculations are for
idealized geometries that do not necessarily reflect the experimental reality. One is faced with a
potential disparity between the geometry encountered in the experiment and those computable
theoretically. We may for instance start off with a body that is very spherical, but that when
we process it (heating, gluing or coating), the sphericity of it will be reduced. For instance, in
[13], the initial borosilicate spheres are extremely smooth (roughness < 0.1%) but the process
of heating can induce surface roughness. And even if we calculate scattering coefficients for
a given surface roughness profile, this is not necessarily what will be found experimentally.
The problem requires both theoretical and experimental studies that are developed together.
It is clear that we must perform a matching of experimental data (classical scattering data
from the body) with calculations that allow for these unknown ‘to be measured’ parameters
(for example non-spherical surfaces). Only with this interplay can one be confident that the
real bodies are being quantitatively described and to what extent perfect geometries are a
good approximation. It could be labelled under the ‘realistic geometries’ motif. For bodies
in dispersive media, more needs to be understood on different material choices together with
improvements experimentally, to be able to resolve the detailed difference between different
proposals for physical observables.
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Appendix A. Composition of Green’s tensors

The bulk Green’s tensor is defined by(∇ij + k2
ij (x, ω)

)
Gfree

ij (x, y|k) = δij δ
3(x − y), (A.1)

which can be rewritten as

Gfree
ij (x, y|k) = 〈x| 1

∇ij + k2
ij

|y〉. (A.2)
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This can be functionally differentiated with respect to kij:∫
k2
jm

δ

δk2
jm

Gfree
in (x, y|k) = −〈x| 1(∇ij + k2

ij

)k2
jm · 1(∇mn + k2

mn

) |y〉. (A.3)

A complete set of states can now be inserted and together with taking the imaginary part, we
find∫


(
k2
mn

) δ

δk2
mn

Gij (x, y|k) = −
∫

d3zGim(x, z|k)
(
k2
mn

)
(Gnj (y, z|k))†. (A.4)

At this point, further simplification is possible when a known Green’s tensor is available
together with the corresponding dispersion relation.

Appendix B. Derivation of the multi-sphere force

Substituting the scattering coefficients and the driving mode vacuum expectation values into
the field correlation functions, one finds that the perturbative force on sphere 1 due to multiple
scattering is

F[1|N − 1] = −(−1)N
h̄

4π
R[1]


∫ ∞

0
dωk

× 〈1|[α1(ωR[1])
N∑

i=2

A1,i (r[1, i]) · αi(ωR[i])

· · ·
N∑

j=2

Ai,j (r[i, j ]) · αj

N∑
j=2

∇r[j,1]A
j,1(r[j, 1])]

× j (kR[1])h+(kR[1])W(ωR[1])|1〉, (B.1)

where (here the background permittivity is εB)

W(ωR[1]) = L(L + 1)
(
L(L + 1) − 1

2 (1 + εB)ω2R[1]2
)
. (B.2)

Here we have omitted the SO(3) indices as in the earlier text but for the measure W above,
we have stated how it depends on the labels. This encapsulates all contributions of the force
as an order N polynomial in the scattering coefficients. We use the reality properties of the
polarizabilities and translation coefficients after Wick rotation together with the necessary
thermal factor for the finite temperature system to rewrite this expression. The polynomials in
the translation coefficients can be seen to be a path-ordered expression linking all the scattering
centres in a closed loop starting and finishing on sphere 1. We define this polynomial to be
PO[α,A]N1,1 and that it is simply connected (i.e. a scattering coefficient for any given sphere
only appears once). With the gradient defined always to act on the last translation matrix, we
obtain for the force

F[1|N − 1] = (−1)N+1h̄

4π

N∑
i=2

∇r[i,1]

∫ ∞

0
d� cot

(
h̄�

kBT

)

× 〈1| [PO[α,A]N1,1

]
× (kR[1]) · j (R[1]) · n(R[1])W(�R[1])|1〉. (B.3)

We now make a change of integration variables to X = √
εB�D[1, 1]/c, which is

dimensionless, together with the introduction of the Jacobian factor J and the extraction
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of the exponentials from the translation coefficients, so that

F[1|N − 1] = −(−1)N
h̄c

4π

N∑
i=2

∇r[i,1]

×
∫ ∞

0
dXJ−1 e−X

D[1, 1]
cot

(
h̄cX

kBTD[1, 1]

)

× 〈1| [PO[α,A]N1,1

]
×

[(
XR[1]

D[1, 1]

)
· j

(
XR[1]

D[1, 1]

)
· n

(
XR[1]

D[1, 1]

)
· W

]
|1〉, (B.4)

with

J := dX

d�
. (B.5)

For the calculations in this paper, we will always take this Jacobian to be the simple case of a
constant dielectric.
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